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An algorithm for studying the nonstationary conditions of formation of an optical 
fiber is studied and the results of numerical calculations with perturbation of 
the feed and draw rates are presented. 

The problem of the stability of the drawing process, studied in part one [i], determines 
the region of parameters where continuous formation of an optical fiber (OF) is possible, 
i.e., small perturbations of the intitial state decay in time and do not lead to decomposi~ 
tion of the liquid jet. To optimize commerical production of optical fibers the character 
of the transient processes accompahying different stepped perturbations and the sensitivity 
of the diameter of an OF to small fluctuations of the drawing parameters near the stationary 
values are of great interest. The solution of this problem will make possible the following: 

optimization of the control system with respect tO the output diameter of the fiber; 

finding the frequencies at which the reaction of the drawing process to external pertur- 
bations is maximum (this information is necessary in order to optimize the drawing equipment, 
for example, to eliminate vibrations at resonance frequencies, to determine the optimal toler- 
ances in the geometric dimensions of the preform to stabilize the furnace temperature, etc.); 
and, 

determining the region of parameters in which the drawing process is least sensitive to 
external perturbations. 

i. Formulation of the Problem. The study of the reaction to external perturbations is 
based on a mathematical model [2, 3] describing the conditions of formation of fibers by the 
molding method with heating of the preform in a furnace. The transfer function was calcu- 
lated both based on the solution of the starting nonlinear system of equations [3] and based 
on its linear analog [4]. In the first case the steady-state values of R(x), V(x), and 
T(x) were taken as the initial data and a stepped perturbation of one or another parameter 
was given at the time T = 0. Using the linearized system of equations [4] to find the trans- 
fer function the energy equation can be written in the following form: 
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since, unlike the study of the stability of the process, in this case it is necessary to 
study perturbations of the number St and the temperature of the furnace, which analogously 

to R, ?, and; T are represented in the form of expansions ~ S~(~) ---~ St[l + ~s Tp(~, ~) 

T;(~I + Tp0], ~)]- Here 
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Fig. !. The structure of the algorithm employed to study numerically the 
nonstationary process accompanying the formation of OF. 

The rest of the notation in Eq. 
~inearized system of equations are obtained by substituting the expansions of R, V, anl 
T into the boundary conditions [3] and assume the following form: 

I~(X, T)=Vo(~,, R(X, +) Ro(~), %(X, ~) %(~) at x=O,  

OT(x, ~) = 0  at x =  1, 
(x, = Ox 

(i) corresponds to [4]. The boundary conditions for the 

(2) 

where ff0(T), Re(T), Th(T) and gb(T), are, generally speaking, arbitrary functions of the time 
and describe the perturbation of the boundary parameters; in particular, in the study of 
transient characteristics they are step functions. 

The linearized initial- and boundary-value problem was solved numerically using the 
method of fractional steps [5]. In each time layer the system was spl~it according to the 
physical processes (R, V, T) into three fractional steps [6]. The starting relations were 
approximated by an implicit difference scheme with second-order accuracy, and the system 
of linear algebraic eqhations obtained was solved by the method of flux factorization [7]. 

The ultimate purpose of studying the reaction of the OF drawing process to externel 
disturbances is to find the amplitude-frequency characteristics (AFCs) A~, which are t~e 
modulus of the frequency transfer function W(im), where ~ is the circular frequency (a real 
number). Currently there exist two efficient algorithms for constructing the AFC of the 
OF drawing process with different external perturbations. 

The first approach, which was employed in [8-10] for the case of perturbation' of the 
drawing velocity and the radius of the preform, is based on the assumption that an arbitrary 
perturbation can be represented as a superposition of harmonic functions of time (expanded 
in a Fourier series [ii]), so that the problem of finding the AFC is completely solved by 
finding the solution for harmonic disturbances of the form 

g t  = 8e- % = .... 6e- % = ( 4 )  
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Fig. 2. Measurement of the OF radius with stepped perturba- 
tion of the feed rate (solution of the nonlinear system of 
equations): i) perturbation of Ff for 5; 2) experimental 
values Tp = 2320~ Rp = 0.015 m, Ff = 0.025 N, R 0 = 0.0046m, 
R b = 62.5 pm, V b = 3 m/sec, the magnitude of the perturbation 

)0 TD2_b0 - 2350~ ~ = 0.565, R~ = 0.015 m, 
is equal to 15%; ~ 6 m, R b = 62.5 pm, V b ~ 3 m/sec, the Ff = 0.019 N, R 0 4 
magnitude of the perturbation is equal to 15%; 4) experimental 
values, 2220; 0.015; 0.075; 0.046; 62.5; 3; 15; 5) 2250; 0.375; 
0.01; 0.186; 0.005; 64; I0; i0; 6) 2250; 0.375; 0.01; 0.011; 
0.005; 64; 0.5; 20 (the dots are the experimental values for 4). 
Ff, N; AR b, ~m, ~, sec. 

where 6 is the amplitude (a real number). 

If there is a periodic perturbation at the input to the system96{St, re, g~ S0, 9b}, 
then in the stationary state, because the equations are linear, there will also be a harmonic 
function of time w,itb ~he same frequency at the outlet [12], so that the solution has the 
form 

= 8(r+ iT)e--f% f = ~(v+ i~)e --~, ? = 6(t+ ~)e--~% (5) 
Substituting Eq. (5) and separating the real and imaginary parts transforms the starting 
equations into a system of second-o~der ordinary differential equations: 

' �9 (0~ ~ --. %t' -- q&t, 3p v" + fh - -  ~z~ ~ v, + Gv  = o~ _ ~ r  + V 
Re , 2 ] 

( 2 ) -  co~ --%P-%L 
Re V ' 

(6) 

( 7 )  

t" + %t'  + % t  = (~ - -  ~z~r + R %  v' - -  f~3v + r - -  1~% - -  G % ,  
p--~ 2 v  v (s)  

pe + %P + q ~ d = - ~ t  v r - -~ , ,7+-2V -- f&& (9) 

(0 - 1 
r' = ---- r -- --v', (i0) 

V 2 

r' (0 I ~ 
V 2 (11) 

where the coefficients k I and k 2 are weighting factors: k I = 1 in the case of perturbation 
of the furnace temperature, k 2 = 1 for the case of perturbation of the St number, and in 
the remaining cases k I = k~ = 0. 

The boundary conditions for Eqs. (6)-(11) are obtained after Eqs. (4) and (5) are sub- 
stituted into Eqs. (2) and (3), and they will be studied in detail when the problem is for- 
mulated for a specific case. 
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Fig. 3. The change in the radius of the fiber with a stepped 
perturbation of the draw rate (the solution of the linearized 
system of equations, V 0 = 1%): i) perturbation of the pulling 
force for 2; 2)Tp2 = 2250~ V b = i0 m/sec; 3) 2250; 3; 4) 
2150; 3; 5) 2250; 0.5. F, Rb, %. 

If the radius of the fiber as a function of time is regarded as the "output," then 
by definition the AFC is the ratio of the modulus of the amplitude of the perturbatio[ of 
the cross section of the fiber to the modulus of the amplitude of the perturbation and, 
according to Eqs. (4) and (5), it can be represented as follows: 

A~ = [,.2(]) +7~(])1~ 2. 

To find r and r with x = 1 the system of second-order differential equations (6)-(11) 
was reduced with the ~elp of the substitutio~ of variables (uj6{v, G StJ) to a system of 
ordinary differential equations, which were solved by the "aiming" method [13] since the 
values of the functions sought are given at both ends of the region of computation. The 
integration "forward" (in the direction of increasing argument) and "backward" (in the oppo- 
site direction) were performed by the method of Adams [14], after which the solutions ~ere 
joined at the center of the interval using the algorithm described in [13]. 

The second approach, which was first used in [15] in order to calculate the AFC of 
the @F drawing process, is based on the assumptions of the theory of automatic regulation, 
according to which the frequency transfer function for a linear system is the Fourier trans- 
form of its weighting function [16]: 

I/z (io) = ~ 0~ ~ (~) e-'O~T, ( 1 2 )  
0 

where ~I(T) is the response to a 6-function perturbation. Let Ul(~) and U2(~) be the ::eal 
and imaginary components of W(i~); then A~ =[U~(~)~-U~(e)]I/2. The weighting function 

can be obtained by differentiating the transfer function with respect to the time ~I(TI! = 
d~2(T)/dT. 

The numerical study of the nonstationary processes accompanying the formation of an 
OF was performed for perturbations of the feed and draw rates, the radius of the preform, 
the furnace temperature, and the external heat transfer coefficient. The calculations were 
performed in two stages using the scheme shown in Fig. i. The isothermal regime was e~ployed 
as a model problem which was used to debug the algorithm for calculating the transfer func- 
tion and the AFC. 

In comparing the results of the numerical and experimental study of the OF drawin~ 
process (the measurements were performed on the OPTEX drawing machine) the experimental data 
were smoothed using cubic splices [17] and direct calculations were performed for the follow- 
ing initial data: Tpl = 1500~ ~ = 0.375, RD = 0.01 m, R 0 = 0.005 m, R b = 64 ~m, St = 2.5, 
80 = 0.11 m, the physical properties of the glass were taken from [18]. 

In calculating m2(~) the perturbation of the tensile force for the nonlinear system 
of determining equations was calculated in parallel using the formula [3] 
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Fig. 4. The AFC of the nonisothermal regime of 
fiber formation (perturbation of the feed rate): 
i) TD2 = 2250~ V b = 0.5 m/see; 2) 2250; 3; 3) 
2250~ 0.5; 4) 2250; 3; 5) 2250; i0; 6) 2150; I0 
(solid lines - the solution of Eqs. (6)-(ii), 
dashed lines - Fourier transform of the weighing 
function; m is the number of oscillations in 2~ 
see). 

F ?~R 2 O V q_ R 1 iR~dx" 
Re Ox We Fr  

(13) 

Here F=Ft/apI2V~ is the dimensionless pulling force. The expression for calculating the 

perturbation F for the lineari~ed_system_of equations is obtained after substituting into 
Eq. (13) the relations for R, V, T [i], F (~) = F [i + F(T)] and linearizing with respect 
to the variables R, V, and T: 

1 g 6~Rzv" R - -  ~ R~Y~dx + Re a ~  ~- R W  - - R E ~  "P ~ "F~ ~ -[ Re , Fr  

2. Perturbation of the Preform Feed Rate. The boundary conditions for calculating 
the transfer function are obvious, and therefore here and below they will not be studied. 
We stress that in studying the perturbations of the feed and draw rates and the radius of 
the preform it is assumed that ~t = Tp = 0' in ~q. (i). In calculating the AFC based on 
the solution of Eqs. (6)-(11) substitution of variables (zj = duj/dx, j = i, 2, 3, 4) gives 
a system of ordinary differential equations, in which some of the initial conditions are 
given at the left ~nd of the working interval (~, v, s t, r, r) while the other conditions 
are given at the right end (v, v, z~, z4). In order to be able to integrate it "forward" 
and "backwards" to realize the method of "aiming" it is necessary to evaluate the values 
of the functions sought that are not given at x = 0 and x = I. By virtue of Eq. (4), v(0), 
v(O), t(0), t(0), r(0), v(1), v(1) are equal to either unity or zero. FDr this reason the 
assumption that zj(0) = zl(1) = z2(1) = 0, j = i, 2, 3, 4 is obvious. For any type of per- 
turbation the exact values of t(1), t(1), r(1), r(1)j cannot be given, so that in all cal- 
culations their zeroth approximation was employed and then refined by the method of "aiming." 

Figures 2 and 3 show the results of the numerical calculation of the transfer function. 
It follows from these results that the reaction of the fiber drawing process with perturbation 
of the feed rate is very close to linear (compare Figs. 2 and 3). The latter is also con- 
firmed by the fact that ~2(~) of the system with negative perturbation, when the conditions 
for fiber formation are identical, is the same as the mirror image of the curves in Figs. 
2 and 3 downwards. As the temperature of the melt is increased the amplitude of the first 
harmonic ~2(T) decreases in the region of deformation, while an increase in the draw rate 
substantially reduces the time of the transient process and reduces the amplitude of oscil- 
lations of the fiber radius. With a draw rate of -10 m/see the transient process becomes 
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Fig. 5. The change in the OF radius with a 
stepped perturbation of the draw rate (solu- 
tion of the nonlinear system of equations): 
i) T 2 = 2350~ ~ = 0.565, R~ = 0.015 m, 
Ff =P0.019 N, R 0 = 0.0046 m, ~b = 62.5 pm, 
V b = 3 m/sec, the magnitude of the perturba- 
tion is 15%; 2) experimental values Tp = 
2320~ Rp = 0.015 m, Ff = 0.025 N, R~ = 
0.0046 m, R b = 62.5 Bm, V b = 3 m/sec, the mag- 
nitude of the perturbation is 15%; 3) experimen- 
tal values 2220; 0.015; 0.075; 0.0046; 62.5; 3; 
-15; 4) 2250; 0.375; 0.01; 0.01; 0.011; 0.005; 
64; 0.5; -20; 6) 2250; 0.375; 0.01; 0.186; 0.005; 
64; i0; -i0; 5) the perturbation of the pulling 
force Ff for 6 (the dots are the experimental 
values for 2). 

aperiodic, i.e., a practically smooth transition from one state of equilibrium to anoi:her 
is observed. Calculation of the perturbation of the pulling force (Figs. 2 and 3) showed 
that initially it makes a sharp jump and then starts to undergo synchronous oscillations 
with m2(T), leading them somewhat in phase. 

The results of the calculation of the AFC based on the solution of Eqs. (6)-(11) and 
the Fourier transform of the weighting function are virtually identical, but from the ~iewpoint 
of computer time it is best to calculated A m using the formula (12) (the computing time 
is approximately two to three times shorter). In addition, in solving Eqs. (6)-(11) in 
some cases, when V b < 3 m/sec, numerical instability is observed (the iteration based on 
the aiming method does not converge). The AFC has a distinct maximum, whose magnitude is 
determined by the temperature of the melt and the value of W, while the position on the 
frequency scale is determined by the draw rate (Fig. 4), and in addition as V b increases 
the AFC shifts into the high-frequency region and the amplitude of the oscillations decreases. 
For a high draw rate increasing the temperature of the melt results in a decrease in the 
magnitude of the first peak of the AFC (curves 5 and 6 in Fig. 4), but in this case the 
amplitude of the high-frequency oscillations increases substantially. 

3. Perturbation of the Fiber Draw Rate. Figures 5-7 show the results of calculations 
of the transfer function and the AFC. The basic behavior of these characteristics, noted 
above for the perturbation of the feed rate, are valid for this case. Here it should ~e 
noted that the linear approximation with perturbation of V b is not as good as for V 0 (~ee 
for comparison Figs. 5 and 6). This largely pertains to the starting section of the tcansfer 
function (~ > 2 sec), where over a very short time interval a practically jump-like change 
occurs in the diameter of the fiber (Fig. 5, curves i, 4, and 5). The most significan: 
difference between the results of the experimental study (curves 2 and 3 in Fig. 5) and 
the calculation (curve 1 in Fig. 5) is also observed in the section with �9 < 2 sec and is 
evidently caused by the fact that a finite time is required to reduce the draw rate by 15%. 

The first peak in the AFC is less distinct than for the perturbation of V 0, and the 
magnitude of the peak approaches zero as the draw rate increases. In addition, this graph 
confirms even more graphically the need for choosing correctly the temperature for formation 
of the OF, since overheating of the melt with a high draw rate results in the possibility 
of the appearance of high-frequency oscillations of the fiber radius (curves 5 and 6 Jr, 
Fig. 7). 
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Fig. 6. The change in the OF radius with a stepped perturbation 
of the draw rate (solution of the linearized system of equations, 
Vb = 1%): i) Tp2 = 2250~ V b = 0.5 m/sec; 2) 2150; 3; 3) 2250; 3; 
4) perturbation Ff for 5; 5) 2350; i0 (Rk should be replaced by Rb)- 

Fig. 7. The AFC of the nonisothermal regime of OF formation (pe- 
turbation of the draw rate): i) T 2 = 2250~ Vb = 0.5 m/sec; 2) 
2250; 3; 3) 2250; 0.5; 4) 2250; 3~ 5) 2250; i0; 6) 2150; I0 (the 
solid lines are the solution of Eqs. (6)-(11) and the broken lines 
are the Fourier transform of the weighting function). 

NOTATION 

T, temperature; ~, time; k, dimensionless effective thermal conductivity of the melt; 
x, longitudinal coordinate; R, radius of the jet; V, velocity of the melt; Tp, furnace tem- 
perature; ~, perturbation of the function y, y, yE{R, V, T, Ss T~. ~, Ro, r~, Vb, F~};iiy, expansion of 
the function for performing the linearization 0=y(l+0), y6{R, V,T, St, T~, Vo, RQ, Vo, T~, Fj}; ~, =~, ~, 
coefficients in the linearized equations; q, coordinate along the surface of the furnace; 
To, temperature of the gas; Rp, radius of the furnace; ep, emissivity of the furnace; 8, 
absorption coefficient; k i , weighting factors; V0, feed-rate; R0, radius of the preform; 
T k, temperature of the melt at x = 0; Vb, draw rate; TDI , Tp2 , minimum and maximum tempera- 
tures of the furnace; ~, parameter in the functional T~(q); 80, length of the heated sec- 
tion; Ff, tension force; p, dimensionless viscosity of-the melt; a2, a parameter in the 
dependence p(T); Pe=pVocl/%~ Peclet number, where p, c, and XT, density, heat capacity, 
and molecular conductivity of the melt; s length of the computing region; St = h/pV0s 
Stanton number; h, external heat transfer coefficient; Re=gVol/~o, Reynolds number; ~0, 

2 4/cpVo , where n c is the refractive index of the gas blown through the velocity scale; x=nc~oT o 
heating zone; a0, Stefan-Boltzmann constant; We=V0pUo , Weber's number; o, surface tension; 
Fr = 2V0/gs Froude's number; g, acceleration of gravity; W = Vb/V0, velocity factor; 
(..)'=dNx ; ARb, difference between the stationary value of R b and the instantaneous value; 
(...)'=~Vax~. 
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